[1]刘强 陈福兰.基于倒谱与BP网络的船舶生活垃圾分类方法研究[J].南通航运职业技术学院学报,2016,(01):34-38.[doi:10.3969/j.issn.1671-9891.2016.01.010]
 LIU Qiang CHEN Fu-lan.Research on Classification Methods for Marine Life Rubbish Based on Cepstrum and BP Network[J].Journal of Nantong Vocational & Technical Shipping College,2016,(01):34-38.[doi:10.3969/j.issn.1671-9891.2016.01.010]
点击复制

基于倒谱与BP网络的船舶生活垃圾分类方法研究(/HTML)
分享到:

南通航运职业技术学院学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年01期
页码:
34-38
栏目:
船舶工程
出版日期:
2016-03-25

文章信息/Info

Title:
Research on Classification Methods for Marine Life Rubbish Based on Cepstrum and BP Network
作者:
刘强 陈福兰
南通航运职业技术学院船舶与海洋工程系 南通航运职业技术学院机电系
Author(s):
LIU Qiang CHEN Fu-lan
Dept.of Ship & Ocean Engineering, Nantong Vocational & Technical Shipping College Dept.of Mechatronics, Nantong Vocational & Technical Shipping College
关键词:
倒谱 材质分类 神经网络 智能识别
Keywords:
Cepstrum Material classification Neural network Intelligent recognition
DOI:
10.3969/j.issn.1671-9891.2016.01.010
文献标志码:
A
摘要:
文章介绍了船舶生活垃圾中不同材质的物体敲击声波的特征提取方法, 建立了基于倒谱与神经网络的物体材质的智能识别模型与算法, 并通过对玻璃、塑料、金属铝箔等常见物体材质进行分类测试, 证实了该分类方法的有效性, 为船舶生活垃圾的智能分类提供了新思路。
Abstract:
This article introduces the feature extraction methods of object percussion sound waves and establishes the intelligent recognition model and algorithm of object material based on Cepstrum and neural network.In addition, based on the classification test of such ordinary material as glass, plastic and metal foil, it verifies the effectiveness of the classification methods, which is expected to offer a new angle for the intelligent classification of marinelife rubbish.

参考文献/References:

[1]刘翠伟, 李玉星, 王武昌, 等.输气管道声波法泄漏检测技术的理论与实验研究[J].测试技术学报, 2013(3) :373-378.

[2]赵毅, 尹雪飞, 陈克安, 等.一种新的基于倒谱的共振峰频率检测算法[J].应用声学, 2010 (6) :416-419.
[3]林玉志.基于声学特征的乐器识别的研究[D].广州:华南理工大学, 2012.
[4]靳舜.基于声音和震动信号特征融合的车型识别研究[D].西安:长安大学, 2014.
[5]侯雪梅.基于改进LP倒谱特征和神经网络的语音识别算法研究[D].太原:太原理工大学, 2006.
[6]王燕.基于倒谱分析的单水听器目标运动参数估计[J].物理学报, 2014 (3) :63-70.

更新日期/Last Update: 2020-10-05